
1

Displaying Data with Arduinos
David R. Brooks, Institute for Earth Science Research and Education, © 2020

 This document shows how to use various devices to display data collected from sensors

attached to Arduinos. An Arduino UNO is used for most of the examples. In general, no changes

are required to UNO code other than choosing the correct board in the IDE before uploading a

sketch. All the sample sketches included here were created with the Arduino IDE on a Windows

10 computer. There’s no reason to believe that results will be different with other operating

systems. The document is not an Arduino tutorial; it assumes some familiarity with the Arduino

IDE and using Arduino-compatible sensors of various kinds to collect data.

I hope this document will make it easier to find and use appropriate data display methods and

devices. Along the way I have had some occasional unexplained compile and upload glitches, but

all the code presented here has run successfully through my Windows 10 computer with Arduino

IDE 1.8.9. You can download all the sketches in this document here:

www.instesre.org/ArduinoDataDisplay/code.txt.

Serial.print... functions

 The Serial.print() and Serial.println() functions are used to display values in

a serial port (COM) window created by the Arduino IDE. Once a sketch has been uploaded, access

the serial port window by clicking on the small “magnifying glass” icon in the upper right-hand

corner of the IDE window. Of course these functions are available only when your Arduino is

connected to a computer through a USB cable. These functions will display characters, strings of

characters, and real or integer numbers. They transparently convert numerical values to strings of

characters to be displayed. Numbers can be displayed in a variety of formats.

 Only one value can be given as an input parameter in a Serial.print() or

Serial.println() function. (A character string counts as one value.) The

Serial.println() function adds a “new line” character after displaying the parameter.

 Sometimes with long sketches, you may get error or warning messages that say your sketch

will not compile or that there may be problems running the sketch. A common source of these

warnings is that your Arduino is short of or out of RAM (Random Access Memory). This is

because strings displayed by Serial.print() or Serial.println() take a lot of limited

RAM space (2048 bytes on an UNO). One way around this is to use the F() macro inside

Serial.print() or Serial.println() functions when you want to display strings. This

macro keeps strings in program memory and out of RAM. F() won’t work when you’re displaying

numerical values. It’s alleged that the F() macro adds more time – more microcontroller clock

cycles – to the time required to display a string, but this isn’t a potential problem worth worrying

about for displaying data from sensors. What does F() actually do? Putting all the string

parameters in the sketch below inside F() macros, for example,

Serial.print(F("HEX "));

instead of
Serial.print("HEX ");

uses 202 bytes of RAM space instead of 426 bytes. This might not seem like much of an

improvement, but this program uses only 3916 bytes (12%) of the available 32256 bytes of

2

program space. For larger sketches, and/or sketches where you’re displaying lots of strings, using

F() can make the difference between a sketch that will work and one that won’t.

 For displaying real numbers, the optional second parameter is the number of digits to be

displayed to the right of a decimal point. The default is 2 digits. You can specify more digits, but

bear in mind that the precision for real numbers in Arduino programming is only 6-7 decimal digits

(total digits, not just digits to the right of a decimal point). Specifying more digits than is available

within the float data type – there is no “double precision” data type for real numbers in the

Arduino programming language – is pointless and potentially misleading.

 Arduino has problems with very large or very small real numbers. You can specify small or

large numbers with exponential notation, but that doesn't remove the problems with displaying or

using them. As shown below, you can add more digits with the second parameter in a print

function, but that just displays junk digits and doesn't solve the problems inherent with using very

small or very large real numbers in Arduino calculations. The only real solution is to be careful

about what you ask your code to do. Usually, real physical values from sensor data can and should

be scaled to be of a reasonable size. For Arduino data collection projects, you will almost certainly

never find sensor data that has a precision of more than four or five digits. This will be even more

important when you use display devices that have more limited space for representing numerical

values.

// SerialPrintTest, D. Brooks, June 2020

int analogValue;

float realValue=sqrt(10.), big=123445789.3, small=.00000076753,

smallE=7.6753E-7;

void setup() {

 Serial.begin(9600); // Open the serial port at 9600 bps for UNO:

 analogValue = analogRead(0); // Read "junk" value from A0:

 // All these value formats are ASCII-encoded...

 Serial.println("Displaying integers...");

 Serial.print("decimal (default) "); Serial.println(analogValue);

 // default is decimal

 Serial.print("DEC "); Serial.println(analogValue, DEC); // decimal

 Serial.print("HEX "); Serial.println(analogValue, HEX); // hexadecimal

 Serial.print("OCT "); Serial.println(analogValue, OCT); // octal

 Serial.print("BIN "); Serial.println(analogValue, BIN); // binary

 Serial.println("Displaying real nunbers...");

 Serial.print("no second parameter: "); Serial.println(realValue);

 Serial.print("second parameter = 8: "); Serial.println(realValue,8);

 Serial.println("Arduino real nunbers have only 6-7 decimal digits of

precision. Everything else is 'junk'");

 Serial.print("Displaying a big number, 123445789.3: ");

Serial.println(big);

 Serial.print("Displaying a small number, .00000076753: ");

Serial.println(small,18);

 Serial.print("Displaying a small number specified with exponential

notation: ");

Serial.println(smallE,18);

}

void loop() {}

3

Liquid Crystal Displays (LCDs)

How do you display data when your Arduino project is no longer connected to your computer

through a USB cable data? One solution is to use an LCD. Widely available LCDs will display 2

rows of 16 characters each or 4 rows of 20 characters each. You can get LCDs with programmable

background colors and even with on-board buttons that can be read from your Arduino code to

change what’s being displayed.

“Bare” LCDs require several pins to interface with an Arduino. For just a few more dollars,

you can get LCDs with an I2C interface which, like all I2C devices, requires only two pins for

communications. You almost certainly will never have a problem with LCD I2C hardware

addresses conflicting with addresses for other I2C devices. For these reasons, I never bother with

LCDs that lack an I2C interface. Like all I2C devices, I2C-interfaced LCDs require software

libraries (as do non-I2C LCDs). There are many such libraries available online and any reputable

vendor will provide access to a library that will work with their LCDs. The left-hand image below

shows 16x2 and 20x4 LCDs from sunfounder.com. (They still have the protective covering over

the window.) On each of these I soldered small 4-pin screw terminal connectors for attaching to

an Arduino; you could also use M/F jumper wires from the I2C interface board mounted on the

back of the display.

4

 The good news about LCDs is that their software libraries include print functions that nearly

parallel the functionality of the serial window functions discussed in the previous section. Except

for functions needed to set them up, you don't have to learn any new code to use LCDs. The right-

hand image above shows output from the code below. White text on a blue background is standard

for these devices. The backlight brightness, and hence the background/text contrast, can be

adjusted with a potentiometer on the back of the board.

 Note that the LCD print function for real numbers works like the serial print functions. In the

code below, lcd.print(17.765) displays 17.76 – not 17.77, but lcd.print(17.7651)

rounds to 17.77. lcd.print(17.765,3) displays the number as given. Writing

lcd.print(17.765,6) displays 17.764999.

 If you write data values to an LCD in a loop() function, you will almost certainly want to

clear the LCD screen with every trip through the loop. Why? Characters displayed on the screen

stay there until something else is written in that position. Suppose at one trip through the loop the

value to display is 100.99 and the next time the value is 99.77. What will now appear on the screen

is 99.779 because the "9" from the last print statement will still be there.

/* LCD1602_I2C_20x4.ino, D. Brooks, September 2017

 Email:support@sunfounder.com

 Website:www.sunfounder.com

*/

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// set the LCD I2C address to 0x27 for a 16 chars 2 line display

LiquidCrystal_I2C lcd(0x27,20,4);

char line1[]="LCD test...";

char line2[]="Line 2";

char line3[]="Line 3";

char line4[]="line 4";

void setup()

{

 lcd.init(); // initialize the lcd

 lcd.backlight(); // turn on the backlight

 lcd.clear(); // clear the display

 lcd.setCursor(0,0);

 lcd.print(line1); lcd.print(' ');

 lcd.setCursor(0,1);

 lcd.print(line2); lcd.print(' ');lcd.print(17.765);

 lcd.setCursor(0,2);

5

 lcd.print(line3); lcd.print(' ');lcd.print(2020);

 lcd.setCursor(0,3);

 lcd.print(line4); lcd.print(' '); lcd.print("HIGH");

}

void loop() {}

non-I2C LCD display hookup and code

 As noted above, LCD displays with an I2C interface are easy to work with. But, this interface

may cause some other I2C devices not to work properly. The alternative is to use an LCD without

the I2C interface. The left-hand image shows a Fritzing breadboard layout for driving a 20⤫4

SunFounder LCD – see

 http://wiki.sunfounder.cc/index.php?title=LCD2004_Module#The_Experiment_for_Arduino.

The potentiometer (I used a 10K potentiometer I had on my desk) is used to adjust the contrast of

characters against the blue background. The right-hand image shows my breadboard layout. It will

be necessary to use the potentiometer to set the contrast, so don’t be discouraged it you don’t see

anything when you first power up the system. LCD from other sources should work the same.

Here’s the code as supplied by SunFounder. If you haven’t already installed the LiquidCrystal
library, of course you will have to do so.
//LCD2004

//You should now see your LCD2004 display the characters

//Email:support@sunfounder.com

//Website:www.sunfounder.com

//2017.3.7

#include <LiquidCrystal.h>// include the library code

/**/

LiquidCrystal lcd(4, 6, 10, 11, 12, 13);

/***/

void setup()

http://wiki.sunfounder.cc/index.php?title=LCD2004_Module#The_Experiment_for_Arduino

6

{

 lcd.begin(20, 4); // set up the LCD's number of columns and rows:

}

void loop()

{

 lcd.setCursor(6,0); // set the cursor to column 19, line 0

 lcd.print("LCD2004");

 lcd.setCursor(4,1);

 lcd.print("Hello world!");

 lcd.setCursor(2,2);

 lcd.print("20 cols, 4 rows");

 lcd.setCursor(1,3);

 lcd.print("www.sunfounder.com");

}

TFT displays

 The serial port and lcd print functions are just for character-based data. Can you use displays

to display graphical data? Yes, and the easiest way to do that is with TFT (thin-film transistor)

displays. Full-color TFT displays are widely available. They can be used to print characters, but

their ability to generate graphics displays is what makes them worth the coding effort.

 TFT displays require software libraries to support them, and it’s a good idea to get them from

reliable vendors that provide the necessary software support. Adafruit.com is one such vendor and

they sell several Arduino-compatible TFTs:

2.2" 240x320 pixels, ILI9341 library (ID 1480)

1.8" 128x160 pixels, ST7735R library (ID 358)

1.44" 128x128 pixels, ST7735R library (ID 2088)

1.14" 135x240 pixels, ST7789 library (ID 4383)

These all include a microSD card reader so that it's possible to fill the screen with appropriately

sized bitmap (.bmp) files.

 Each of these boards has its own software library and they all use the open-source

Adafruit_GFX graphics library. All of these libraries can be found and installed using the Arduino

IDE’s Include Library→Manager tab. Here are examples of finding the GFX library and the

appropriate libraries for the Adafruit 2.2" TFT display – they're already installed on my computer.

(I'm currently using GFX version 1.9.0.)

7

The TFT displays themselves are very fragile. Vendors like Adafruit have mounted them on

breadboard-friendly breakout boards with microSD card holders and level-shifting circuitry to

allow their use with either 3.3 or 5.0 V (UNO) microcontrollers.

 These TFT displays don’t use I2C interfaces. Instead they use an SPI interface, which uses

several pins for communications with your Arduino rather than just two as required for I2C

devices.

This image shows an Adafruit 2.2" TFT display. The microSD card is on the back of the

display, but it's not being used. The display is a line graph generated with “made-up” data – see

below for the code.

 These boards are small and it’s best not to try getting too fancy with displaying too much data

or text. The default built-in 5x8 pixel font, reminiscent of very old dot matrix printer fonts, is very

basic, but perfectly adequate for these kinds of data graphs. The “location” pixel for a character is

8

in the upper left-hand corner of the pixel rectangle. It’s possible to scale the font to a larger size

and specifying size=2 will create blocky but perfectly usable 10x16 pixel characters. It’s also

possible to install “nicer” fonts (see the GFX library documentation), but this is memory-intensive

and will significantly reduce the coding space needed for other things; don’t bother to do it!

Data display code for TFT displays

Line graphs

 The coding challenge for creating graphs on TFTs is scaling data values to their pixel-based

locations within a defined x-y graphing area. Some subset of these pixels is designated as the graph

area. Pixels outside that area are used for axis labels and other text. For the 240x320 pixel 2.2"

TFT display used here – see the image above – I defined a 260x200 x-y pixel space for the graph.

The minimum and maximum x and y values are specified and those values are used to scale the

data to their x-y pixel locations. The values being plotted can be either integers or real numbers,

but in any case they must all be converted to integer values within the x-y pixel space. For these

devices as addressed through the GFX graphics library, the x-y pixel coordinate (0,0) is in the

upper left-hand corner of the display as oriented as shown in the above image. This makes the

y-axis “upside down” from how you would usually consider drawing an x-y graph.

 In the code below, 5 “made-up” barometric pressure values (in units of millibars) are graphed.

The y-axis labels, written as strings rather than numbers, encompass the maximum and minimum

values allowed for this graph. Because of space limitations, the x-axis labels are simply numbered

0 through 5, corresponding to (perhaps) the “time” range of the data values. It might be reasonable

to double the number of x-axis labels to 0 through 10, but more labels than that would be very

crowded. For all these axis labels, their location, including offsets from each axis, is determined

just by trial and error.

 It’s possible to draw symbols at each data point, but the GFX library doesn’t include primitives

for symbols; you can draw small circles or cross marks, for example, but only by using the

available graphics primitives. (I suppose you could use a + or some other printable character for a

symbol.) For sketches where the line graph is drawn based on changing data, see the code for bar

graphs, below.

/* LineGraph2.ino, D. Brooks, June 2020

 Draws line graphs with Adafruit 240x320 TFT display.

*/

#include <Adafruit_GFX.h> // Core graphics library

#include <Adafruit_ILI9341.h>

#define TFT_DC 9

#define TFT_CS 10

#define BLACK 0x0000

#define BLUE 0x001F

#define RED 0xF800

#define GREEN 0x07E0

#define CYAN 0x07FF

#define MAGENTA 0xF81F

#define YELLOW 0xFFE0

#define WHITE 0xFFFF

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);

const int xSize=320,ySize=240; // For 2.2" Adafruit TFT display.

// Define x/y graph space.

uint16_t x0=45,Y0=200,xLength=260,yLength=160;

uint16_t color,axisColor=WHITE,labelColor=WHITE;

9

uint16_t x0Label=x0-2,y0Label=Y0+2; // starting coordinates for x-axis

labels.

// Define axis values and labels.

String xLabels[]={"0","1","2","3","4","5"};

int nxChars=1,nxLabels=6,dx=xLength/(nxLabels-1);

int xLabelOffset=(int)(5.*nxChars/2.);

String yLabels[]={"0980","0990","1000","1010","1020","1030"};

int i,nyChars=4,nyLabels=6,dy=yLength/(nyLabels-1);

// Here are the data to graph...

float X[]={0,1.7,3.3,4.4,5.0};

float Y[]={980,1010,1030,1000,995};

int nX=5;

float Xmin=0,Xmax=5,Ymin=980,Ymax=1030,Xrange=Xmax-Xmin,Yrange=Ymax-Ymin;

float sumX=0,sumY=0;

void setup(void) {

 Serial.begin(9600);

 //for (i=0; i<nX; i++) {

 //Serial.print(X[i]);Serial.print(' ');Serial.println(Y[i]);

 //}

 // Scale the data to graphing space

 for (i=0; i<nX; i++) {

 X[i]=x0+(X[i]-Xmin)/Xrange*xLength;

 Y[i]=Y0-(Y[i]-Ymin)/Yrange*yLength;

 //Serial.print(i); Serial.print(' ');

 //Serial.print(X[i]);Serial.print(' ');Serial.println(Y[i]);

 }

 //Serial.print("Line Graph");

 tft.begin();

 tft.setRotation(3); // Puts x-axis along long edge.

 tft.fillScreen(BLACK);

 tft.setCursor(2,2); // Sets x and y coordinates for upper left-hand

 // corner of a rectangular grid containing

 // the character.

 tft.setTextColor(WHITE); tft.setTextSize(2);

 tft.println("Line Graph");

 // Outline graphing space.

 // "Fast" functions for drawing horizontal and vertical lines.

 tft.drawFastHLine(x0,Y0,xLength,axisColor);

 tft.drawFastHLine(x0,Y0-yLength,xLength,axisColor);

 tft.drawFastVLine(x0,Y0-yLength,yLength,axisColor);

 tft.drawFastVLine(x0+xLength,Y0-yLength,yLength,axisColor);

 tft.setTextSize(1); tft.setTextColor(labelColor);

 //tft.setCursor(x0Label,y0Label);

 for(int i=0; i<nxLabels; i++) {

 tft.setCursor(x0Label+i*dx,y0Label+3); tft.print(xLabels[i]);

 }

 for (int i=0; i<nyLabels; i++){

 tft.setCursor(x0Label-nyChars*5-2,Y0-i*dy-4); tft.print(yLabels[i]);

 }

 // Draw data.

 for (i=1; i<nX; i++) {

 tft.drawLine(X[i-1],Y[i-1],X[i],Y[i],RED);

 }

}

void loop() { }

10

Pie charts

 With graphics libraries available for some programming languages, drawing pie charts is easy

because those libraries include “draw arc” and “fill arc” primitives. The GFX library has neither

of these. The closest it comes is drawTriangle(). and fillTriangle(). The code below

gets around this limitation by representing an entire “pie" made from 180 2° arcs as 180 filled

triangles. The color used to fill the triangles changes when the “upper” angle of a pie slice crosses

into the next slice as determined by scaling values to their equivalent angles. Of course this is an

approximation, but for a screen this small, at 240x320 pixel resolution, the result looks like a circle,

and not a series of triangles.

As a practical matter, I limited the number of pie slices to no more than 7, using predefined

colors. In principle, you could increase the number of slices – you can define as many different

colors as you wish – but that seemed like overkill for this small display. For drawing pie charts

with changing data, see the code for bar graphs, below.

// pieChart.ino, D. Brooks, June 2020

#include <SPI.h>

#include <Adafruit_GFX.h>

#include <Adafruit_ILI9341.h>

#define DEG2RAD 0.0174532925

// Setup for Adafruit 2.2" TFT display.

#define TFT_DC 9

#define TFT_CS 10

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);

#define BLACK 0x0000 // Use black for chart background.

#define BLUE 0x001F // Define up to 7 "standard" colors for pie slices.

#define RED 0xF800 // More than 7 slices stretches use of this small

display!

#define GREEN 0x07E0

#define CYAN 0x07FF

#define MAGENTA 0xF81F

#define YELLOW 0xFFE0

#define WHITE 0xFFFF

uint16_t colors[]={BLUE,RED,GREEN,CYAN,MAGENTA,YELLOW,WHITE};

const int xSize=320,ySize=240; // For 2.2" Adafruit TFT display.

int arraySize=8; // Define 7 data values 1-->7, with [0] set to 0.

float values[] = {0,15.4,5.2,10.9,20.4,11.5,6.6,30.1};

float angles[]={0,0,0,0,0,0,0,360}; // Will hold values coverted to angles.

// Define text for up to 7 legends.

char L1[]= "Legend1",L2[]="Legend2",L3[]="Legend3",L4[]="Legend4";

char L5[]="Legend5",L6[]="Legend6",L7[]="Legend7";

11

int sliceColor=0,sliceNumber=1,i;

float A,r=80,x1cos,x2cos,y1sin,y2sin,sum;

uint16_t x0=r+10,y0=ySize/2;

void setup(void) {

 //Serial.begin(9600);

 // Calculate slice boundary angles.

 sum=0.;

 for (i=0; i<arraySize; i++) {

 sum+=values[i];

 //Serial.print(values[i]); Serial.print(' ');

 }

 for (i=1; i<arraySize; i++) {

 angles[i]=angles[i-1]+values[i]/sum*360.;

 //Serial.println(angles[i]);

 }

 // Draw pie chart and its titla and legends.

 // Pixel locations determined just by trial-and-error.

 // Pie is centered in vertical middle of display.

 tft.begin();

 tft.setRotation(3);

 tft.fillScreen(0x0000);

 x1cos=r; y1sin=0; A=0; sliceColor=colors[0];

 for (i=1; i<=180; i++) {

 A+=2.;

 x2cos=r*cos(DEG2RAD*A);

 y2sin=r*sin(DEG2RAD*A);

 tft.fillTriangle(x0,y0,x0+x1cos,y0-y1sin,x0+x2cos,y0-y2sin,sliceColor);

 x1cos=x2cos; y1sin=y2sin;

 if (A>angles[sliceNumber]){

 sliceColor=colors[sliceNumber]; sliceNumber++; }

 }

 // Draw legends.

 tft.setTextSize(2);

 int y1=50,y2=45,dy=20; tft.fillCircle(190,y1+dy,6,colors[0]);

 tft.setTextColor(WHITE); tft.setCursor(205,y2+dy);

 tft.println(L1); tft.fillCircle(190,y1+2*dy,6,colors[1]);

 tft.setCursor(205,y2+2*dy); tft.println(L2);

 tft.fillCircle(190,y1+3*dy,6,colors[2]);

 tft.setCursor(205,y2+3*dy); tft.println(L3);

 tft.fillCircle(190,y1+4*dy,6,colors[3]);

 tft.setCursor(205,y2+4*dy); tft.println(L4);

 tft.fillCircle(190,y1+5*dy,6,colors[4]);

 tft.setCursor(205,y2+5*dy); tft.println(L5);

 tft.fillCircle(190,y1+6*dy,6,colors[5]);

 tft.setCursor(205,y2+6*dy); tft.println(L6);

 tft.fillCircle(190,y1+7*dy,6,colors[6]);

 tft.setCursor(205,y2+7*dy); tft.println(L7);

 tft.setCursor(150,30); tft.println("CHART LEGENDS");

}

void loop() {}

12

“Wind rose” graphs

 This code is just a modification of the pie chart code. Wind rose graphs are often used to display

meteorological data like wind speed as a function of wind direction. They can also be used to

display other physical quantities whose values are direction-dependent.

 I defined 12 30° “petals.” Similar to other graphs, the length of each petal is adjusted to the

radius of the rose expressed in pixels. The lack of a “fill arc” routine in the GFX graphics library

means that the petals are drawn as triangles rather than arcs. Alternating colors makes each petal

easier to distinguish from adjacent ones. Here’s the code:

// WindRose.ino, D. Brooks, July 2020

#include "SPI.h"

#include "Adafruit_GFX.h"

#include "Adafruit_ILI9341.h"

#define DEG2RAD 0.0174532925

// Setup for Adafruit 2.2" TFT display.

#define TFT_DC 9

#define TFT_CS 10

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);

#define BLACK 0x0000 // Use black for chart background.

#define BLUE 0x001F // These are the values for 8 "standard" colors.

#define RED 0xF800 // Other values can be defined if desired.

#define GREEN 0x07E0

#define CYAN 0x07FF

#define MAGENTA 0xF81F

#define YELLOW 0xFFE0

#define WHITE 0xFFFF

uint16_t colors[]={WHITE,BLUE,RED,GREEN,CYAN,MAGENTA,YELLOW};

const int xSize=320,ySize=240; // For 2.2" Adafruit TFT display.

int arraySize=8; // Define 7 data values 1-->7, with [0] set to 0.

float values[]={0,75,15,50, 20, 52, 47, 30, 44, 31, 43, 77, 19};

float angles[]={0,30,60,90,120,150,180,210,240,270,300,330,360};

float R,r=80,maxR=0,sin30,cos30,cos60,sin60;

// Define text for up to 7 legends.

char L1[]="N",L3[]="E",L5[]="S",L7[]="W"; // intermediate angle labels can

also be defined.

int i,nSlices=12;

float x1cos,x0cos,y1sin,y0sin;

uint16_t sliceColor,x0=xSize/2,y0=ySize/2;

13

void setup(void) {

 //Serial.begin(9600);

 tft.begin(); tft.setRotation(3); tft.fillScreen(0x0000);

 for (i=1; i<=nSlices; i++) {

 if (values[i]>maxR) maxR=values[i];

 }

 for (i=1; i<=nSlices; i++) {

 sliceColor=colors[i%2]; R=r*values[i]/maxR;

 x0cos=R*cos(DEG2RAD*(angles[i-1]-15));y0sin=R*sin(DEG2RAD*(angles[i-1]-

15));

 x1cos=R*cos(DEG2RAD*(angles[i]-15));y1sin=R*sin(DEG2RAD*(angles[i]-15));

 tft.fillTriangle(x0,y0,round(x0+x0cos),round(y0-

y0sin),round(x0+x1cos),round(y0-y1sin),sliceColor);

 }

 tft.drawCircle(x0,y0,r,WHITE);

 tft.setTextSize(2);

 tft.setCursor(x0-5,y0-r-20); tft.println(L1);

 tft.setCursor(x0+r+5,y0-6); tft.println(L3);

 tft.setCursor(x0-5,y0+r+7); tft.println(L5);

 tft.setCursor(x0-r-15,y0-6); tft.println(L7);

 tft.drawLine(x0,y0+r,x0,y0-r,GREEN); tft.drawLine(x0-r,y0,x0+r,y0,GREEN);

 sin30=sin(DEG2RAD*30); cos30=cos(DEG2RAD*30);

 sin60=sin(DEG2RAD*60); cos60=cos(DEG2RAD*60);

 tft.drawLine(x0-r*cos30,y0+r*sin30,x0+r*cos30,y0-r*sin30,GREEN);

 tft.drawLine(x0-r*cos60,y0-r*sin60,x0+r*cos60,y0+r*sin60,GREEN);

}

void loop() {}

Bar graphs

 The fillRect() primitive makes bar graphs easy to code. In this code I’ve limited the

bars to no more than 10. To make code easier to adapt, I’ve separated the tasks into three

separate categories:

1. Outline the graphing space;

2. Draw the axis labels and titles;

3. Draw the bars.

For data that changes, you could put the first two tasks in the setup() function and the third

data-dependent task in the loop() function. For this code I assumed that the value being graphed

is PM2.5 airborne particulates. Perhaps these data are being read from a particulate sensor and

updated at some preset interval. With an array of 10 values to be plotted, when a new value is

recorded, the oldest value is removed from the array of values, the remaining values are moved

14

down one position, and the new value is added to the end. Only the bars need to be redrawn.

However, if you do this, you first have to clear the “old” display by “erasing" each bar by over-

printing it with
tft.fillRect(X0+2+dx*i,Y0-yLength,barWidth,yLength,BLACK);

(assuming BLACK is your background color) before writing the new bar. Finally, drawing the

bars first (see the setup() function) allows the graph space boundaries to be drawn over the bars

instead of being overwritten at the bottom and perhaps at the top by the bars. If you move the

drawBars() function to loop(), then move outLineGraphSpace() to the end of the code

in drawBars().

It’s possible to draw two or even three or more bars for each x-interval, by reducing the number

of intervals over the same x-axis length. You just have to supply the data and adjust the bar widths

and x-offsets as appropriate. Keeping the bar-drawing code in its own function makes it easier to

do this without worrying about the rest of the code.

/* barGraph.ino, D. Brooks, June 2020

 Draws vertical bar graphs with Adafruit 240x320 TFT.

*/

#include // Core graphics library

#include

#define TFT_DC 9

#define TFT_CS 10

#define BLACK 0x0000

#define BLUE 0x001F

#define RED 0xF800

#define GREEN 0x07E0

#define CYAN 0x07FF

#define MAGENTA 0xF81F

#define YELLOW 0xFFE0

#define WHITE 0xFFFF

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);

const int xSize=320,ySize=240; // For 2.2" Adafruit TFT display.

// Define x/y graph space.

uint16_t X0=45,Y0=200,xLength=260,yLength=160;

uint16_t color,labelColor=WHITE;

float values[]={1.5,6.6,13.2,4.9,17.0,12,7.2,8.1,21,25};

float v_size=10,v_min=0, v_max=25;

void setup() {

 Serial.begin(9600);

 tft.begin(); tft.setRotation(3); tft.fillScreen(BLACK);

 drawBars(X0,Y0,values,v_size,v_min,v_max,xLength,yLength);

 outlineGraphSpace(X0,Y0,xLength,yLength); // with WHITE lines

 drawLabelsAndTitles(X0,Y0);

 // Create bars.

}

void outlineGraphSpace(uint16_t X0,uint16_t Y0,uint16_t xLength,uint16_t

yLength) {

 // Outline graphing space.

 // Use "fast" functions for drawing horizontal and vertical lines.

 // (X0,Y0) = lower left-hand corner of graph

 // xLength, yLength = length in pixels of x- and y-axes

 uint16_t axisColor=WHITE;

 tft.drawFastHLine(X0,Y0,xLength,axisColor);

 tft.drawFastHLine(X0,Y0-yLength,xLength,axisColor);

15

 tft.drawFastVLine(X0,Y0-yLength,yLength,axisColor);

 tft.drawFastVLine(X0+xLength,Y0-yLength,yLength,axisColor);

}

void drawLabelsAndTitles(uint16_t X0,uint16_t Y0) {

 // Define axis labels.

 String xLabels[]={" 1"," 2"," 3"," 4"," 5"," 6"," 7"," 8"," 9","10"};

 String yLabels[]={" 0"," 5","10","15","20","25"};

 // Define axis titles.

 char xTitle[]="Days",yTitle[]="PM2.5";

 int nxTitle=4, nyTitle=5; // No more than 10 characters for y title.

 int nxChars=2,nxLabels=10,dx=xLength/nxLabels;

 int nyChars=3,nyLabels=6,dy=yLength/(nyLabels-1);

 uint16_t x0Label=X0-2,y0Label=Y0+2; // starting coordinates for x-axis

labels.

 int yOffset=5; // For printing x-axis labels below x-axis.

 int xOffset=10; // Put bar label in center of its space.

 tft.setTextColor(labelColor);

 // Draw x- and y-axis labels.

 for(int i=0; i<nxLabels; i++) {

 tft.setCursor(x0Label+xOffset+i*dx,y0Label+yOffset);

tft.print(xLabels[i]);

 }

 for (int i=0; i<nyLabels; i++){

 tft.setCursor(x0Label-nyChars*5-2,Y0-i*dy-4); tft.print(yLabels[i]);

 }

 tft.setTextSize(2);

 // Center and print x-axis title.

 tft.setCursor(x0Label+xLength/2-(nxTitle*10)/2,y0Label+18);

tft.print(xTitle);

 //Center and print y-axis title vertically, one character at a time.

 int yTitleStart=35+(10-nyTitle)*17/2; // Center y title text on y-axis.

 for (int i=0; i<nyTitle; i++) {

 tft.setCursor(10,yTitleStart+i*17); tft.print(yTitle[i]);

 }

 tft.setCursor(X0,10); tft.print("PM2.5");

}

void drawBars(uint16_t X0,uint16_t Y0,float V[],int arraySize,int v_min,int

v_max,int xLength,int yLength) {

 int i,px,dx=xLength/arraySize,barWidth=25;

 for (i=0; i<arraySize; i++) {

 px=round(V[i]/v_max*yLength);

 Serial.print(V[i]);Serial.print(' ');Serial.println(px);

 //tft.fillRect(X0+2+dx*i,Y0-yLength+1,barWidth,px,BLACK);

 tft.fillRect(X0+2+dx*i,Y0-px,barWidth,px,RED);

 }

}

void loop() {}

16

E-Ink displays

 E-ink displays are familiar from e-book readers. Their huge advantage is that they are very-

low power devices and once something is written to the screen, it stays there essentially indefinitely

even when the power is off. Adafruit.com currently has three versions:

2.13" black on white (ID 4197)

2.13" red/black/white tri-color (ID 4086)

2.13" flexible black on white (ID4243)

In addition to displaying characters, you can also draw graphics images on this display using

Adafruit’s GFX library. The non-flexible displays include a microSD card for storing images. The

flexible card doesn't have its own microSD card holder.

To demonstrate this device I built a complete system to take advantage of the properties of

e-ink displays:

BME280 temperature/humidity/pressure module adafruit.com ID 2652

DS 1307 real-time clock adafruit.com ID 3296

TPL5110 power on-off timer adafruit.com ID 3435

Solar power manager with 5 V solar panel DFRobot DFR0559-1

Metro Mini 5 V adafruit.com ID 2590

2.13" black on white e-ink display adafruit.com ID 4197

2500 mAh 3.7 V LiPo battery adafruit.com ID 328

Mini and half-size breadboards various sources

17

The system shown here has been running continuously for months in my office, through the

winter, with the solar panel mounted inside a west-facing window in my office – not the most

efficient circumstance for a solar power system but one that works perfectly well for this very low-

power system. During the day the solar manager powers the system and charges the LiPo battery.

At night, the battery goes through a 5 V step-up converter to keep the system running. I used a 5

V Metro Mini board from adafruit.com, but other (less expensive) boards, such as an Arduino

Nano or Pro Mini would also work. The real-time clock and BME280 are I2C devices. The e-ink

display is an SPI device. See the Adafruit for wiring instructions for all these devices. What’s not

included in the Adafruit documentation for its TPL5110 timer is a 10 kΩ resistor between the

“done" pin and ground, which I and others have found necessary to ensure reliable operation of

the timer. The timer delay resistor is set to produce a display update about every 3 minutes – again,

see the Adafruit documentation.

The connections for this system are complicated, but the code, which uses Adafruit's GFX

graphics library, is not difficult. Unlike printing characters to an LCD or TFT display screen, data

to be displayed on the e-ink screen aren’t written directly to the display. They are first written into

18

a data buffer and the display.display(); statement near the end of the code below then

transfers buffer contents to the display.

/* BME280_eInk2.ino, D. Brooks, January 2020

 Based on Adafruit"s sample code for its 250x122 monochrome eInk display,

 ID 4197, displays date/time and T/RH/P values from a BME280 sensor.

 T in deg C, RH in %, P/100 is station pressure at site elevation, in mbar.

 Power provided by Adafruit TPL5110 low power timer board.

*/

#include "Adafruit_GFX.h" // Adafruit Core graphics library

#include "Adafruit_EPD.h"

#include "Wire.h"

#include "RTClib.h"

RTC_DS1307 RTC;

#include "Adafruit_Sensor.h"

#include "Adafruit_BME280.h"

Adafruit_BME280 bme; // I2C

float T,P,RH;

#define EPD_CS 10

#define EPD_DC 9

#define SRAM_CS 8

#define EPD_RESET 5 // can set to -1 and share with microcontroller Reset!

#define EPD_BUSY 3 // can set to -1 to not use a pin (will wait a fixed

delay)

/* using 2.13" monochrome 250*122 EPD */

Adafruit_SSD1675 display(250, 122, EPD_DC, EPD_RESET, EPD_CS, SRAM_CS,

EPD_BUSY);

const byte donePIN=4;

void setup(void) {

 pinMode(donePIN,OUTPUT); digitalWrite(donePIN,LOW); // power on

 Serial.begin(9600);

 if (!RTC.begin()) {

 Serial.println("RTC not running."); exit(0);

 }

 else Serial.println("RTC running.");

 Serial.println(F("BME280 test"));

 if (!bme.begin()) {

 Serial.println("Could not find a valid BME280 sensor, check wiring!");

 exit(0);

 }

 else Serial.println("Found BME280 sensor.");

 display.begin();

 Serial.println("Initialized");

 DateTime now=RTC.now();

 display.clearBuffer(); display.fillScreen(EPD_WHITE);

 display.setTextColor(EPD_BLACK); display.setTextSize(2);

 display.setCursor(5,5);

 display.print(F("MM/DD/YYYY HH:MM:SS "));

 display.setCursor(5,30);

 display.print(now.month()); display.print('/');

 display.print(now.day()); display.print('/');

 display.print(now.year()); display.print(' ');

 display.print(now.hour()); display.print(':');

 display.print(now.minute());display.print(':');

 display.print(now.second());

 display.setCursor(5,55);

19

 display.print(F("T(C) RH(%) P(mbar)"));

 display.setCursor(5,80);

 display.print(bme.readTemperature(),1); display.print(' ');

 display.print(bme.readHumidity(),0); display.print(' ');

 display.print(bme.readPressure()/100.,1);

 display.display(); // writes from buffer to display

 delay(1000); digitalWrite(donePIN,HIGH); // turn off power

}

void loop() {

}

This image looked too “blue-ish” when I took it, so I saved it as a black-and-white image. In

fact the text on this display really is black against a nearly “paper white” background. Unlike some

other kinds of displays, this e-link display is easily readable even in bright sunlight.

Another display (August 2020)…

Some final thoughts…

 As noted earlier in this document, I have sometimes experienced unexplained compile and

upload problems with sketches that use the GFX library, but eventually I was able to get all the

sketches included here working. I have also noted the unfortunate absence of GFX primitives to

draw and fill arcs – parts of a circle.

 Many of the projects shown in this document use hardware from adafruit.com. I regularly use

Adafruit products because I have found them to be reliable and extremely well documented, but

 Since writing this document in June I bought

some small (0.96” diagonal) 128x64 pixel OLED

displays. These are low-power devices that are

useful for displaying simple data from sensors in

real time. You can find the document describing

that project at

http://www.instesre.org/ArduinoBook/OLED.htm.

http://www.instesre.org/ArduinoBook/OLED.htm

20

other sources can also be found – sparkfun.com, for example, is another reliable US-based

supplier.

Many Arduino-compatible products come from “off-shore” manufacturers, China in particular,

even when they are sold by US vendors. US vendors should stand by their products regardless of

their source, but buying such products online directly from off-shore sources can be a risky

proposition. In some cases I have not had any problems and in other cases I have had shipping

time and quality control issues. Caveat Emptor!

Comments and questions? Please feel free to contact me at brooksdr@instesre.org. To learn

more about using Arduinos to collect, record, and display environmental data, see

http://www.instesre.org/ArduinoBook/ArduinoBook.htm.

David R. Brooks, PhD

June, 2020

mailto:brooksdr@instesre.org
http://www.instesre.org/ArduinoBook/ArduinoBook.htm

